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Optimization of Thermal
Conductivities of Isotropic and

R. A. Meric

Applied Mathematics Department,
Research Institute for Basic
Sciences, TUBITAK,

Gebze, Kocaeli, Turkey

Orthotropic Solids

Optimization of thermal conductivities of isotropic and orthotropic solids is treated
as a steady-state optimal control problem. Nonlinear necessary optimum conditions
are first derived for-the so-called material optimizdtion problem, and a general

numerical method of solution is then proposed, The iterative numerical procedure

solves the linearized state and co-state equations by the finite element method and
minimizes the performance index:by. the conjugate gradient method. Numgrzqa[
solutions, checked with exdct results when possible, are given for an isotropic in-
finite plate and a cylinder.

1.0 Introduction

Much literature is available on control systems described by
linear differential equations. However, if the. control (or
design) characteristics to be selected appear in the coefficients
of the otherwise linear differential. equations the . system
equations become nonlinear when taken as equations in-
volving both state and control variables. One field in which
such nonlinearities are encountered is material optimization.

In a steady-state optimization or open-loop control
problem, control variables: may represent various types of
physical quantities-and then:lead to different optimization
problems. Generally speaking, we may be interested in (@)
shape, (b) load, or (c) material optimization.

For a shape optimization problem in heat transfer, op-
timization of circular fins with heat generation for minimum
weight was achieved by Razani and Ahmadi [1]. Recently, the
present. author has investigated: various load optimization
problems in heat transfer and thermoeclasticity, where the
control loads specifically represented heat fluxes or sources,
and surface tractions [2-8]. As:for a material optimization
problem, Lurie [9] investigated the problem of distributed
control- over the conductivity of the working fluid in
magnetohydrodynamic channel flow and estimated the ad-
vantages in power generation gained from it.

In this paper, optimization of thermal conductivities of
isotropic and orthotropic solids is investigated as a material
optimization problem. The present analysis is one of the few
studies on optimization of material properties which appear
as coefficients of the state variables in heat transfer. The
problem formulation and its overall solution procedure is,
however, applicable to a wide variety of problems. Another
material optimization problem which can be solved in a
similar fashion would be that of optimizing heat transfer
coefficients and/or insulation material thicknesses for a
convection type of boundary condition. In that case, it is
noted that control variables would appear as coefficients of
the state variables, not in the heat conduction equation, but in
the boundary condition only.

In the present investigation, the necessary conditions of
optimality are first derived for an isotropic body by using
calculus of variations and a Lagrange multiplier function. A
numerical method of solution is then proposed in which the
finite element and conjugate gradient methods are utilized for
a mathematical programming approach. Numerical results
are given for two one-dimensional problems involving an
infinite plate and an infinite cylinder, both of which are
composed of uniform material layers.

Contributed by the Heat Transfer Division for publication in the JOURNAL oF
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The: orthotropic material case is treated in the Appendix,
where only the problem formulation and necessary optimum
conditions are provided for brevity.

2.0 Problem Formulation

Consider an isotropic solid body of arbitrary geometry with
nonhomogeneous thermal conductivity k in three dimensions.
A similar problem formulation with orthotropic thermal
conductivity is treated in the Appendix. The steady-state heat
conduction in the body is governed by the following equations

inD: Ve(kV+0=0 )
ons, :T=T @
on S, : kT"+qg+(T-T,)=0 3)

where D denotes the physical domain of interest with the
boundary S = §, + S,; Tis the temperature; Q) and g are the
heat source and boundary heat flux, respectively; T is the
prescribed temperature; o denotes the heat transfer coef-
ficient; T, is the ambient temperature and 7’ represents the
gradient of 7 normal to the surface.

All the quantities in equations (1-3). are assumed to be
known except for the distribution of & which is not given a
priori in the problem. The thermal conductivity & will play the
role of control function in an’ optimization problem, con-
trolling the system state (i.e., the temperature in the body)
such that some physical objectives are achieved.: In practice,
this type of optimization of thermal conductivities might be
needed for designing composite structures of various material
layers. Insulation designs of heat systems, such as heating
pipes, might also require optimization of thermal con-
ductivities or other physical quantities (such as insulation
thicknesses) leading to similar optimization problems.

The aim of the present optimization problem is to find the
optimal & in the nonhomogencous body, satisfying the
condition that k and T distributions will be as close as possible
to (desired) k, and Ty, respectively. By working in the space
of square-integrable functions (and thus excluding point
functions), the so-called performance index J of the op-
timization problem can thus be defined as follows

MeT= 5 | WT-To7 +6k—koD (@

where 8 is a given weighting parameter. There are actually two
physical goals inherent in the problem. These are simply
stated as (@) T—T,, and (b) k—k,. The weighting parameter 3
simply weighs these objectives in a linear combination. In
other words, increased values of 6 decrease the achievement

~ of the first objective, while increasing the achicvement of the
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second objective. We also set the value of 3 according to our
needs and resources (i.e., availability of high or low con-
ductivity materials).

The static optimization problem of optimal thermal
conductivity may formally be described as a steady-state
optimal control problem governed by an elliptic partial
differential equation [10]. By adopting control problem
terminology it can be stated as follows: :

Find the optimal control function & such that the per-
formance index J[k, T] is minimized under the state equation
constraint (1) and the boundary constraints (2-3).

By noting the fact that each term of J[k, 7] is defined in D,
the control problem is classified as a domain control-domain
observation problem. The unknowns are the control function
k and the corresponding state function 7. It may also be noted
that the state equation (1) is a nonlinear (bilinear) equation
when taken in terms of the control and state functions. Hence,
a nonlinear optimization problem is at hand.

3.0 Necessary Optimum Conditions

The present optimization problem has been stated as a
control problem under the system equation constraint (1). It is
possible, however, to adjoin this constraint with J[k, 7] by
means of a Lagrange multiplier function A, obtaining a
modified (or augmented) performance index J*, i.e.,

J*[k,T,)\]=J[k,TJ+SD NV «(kvT)+QldD 5)

The necessary condition for J* to be stationary is that its first
variation should be equal to zero for permissible values of 6k,
6T, and 6\, hence

8J* [k, T,\]=0 6)

By substituting equation (4) into (5) and then taking the first
variation, 6/J* may be written as [11]

oJ* = SD {((T—Ty)6T+ Bk —ky)ok+ N[V (kv T+ Q]
+ ANV (kv T+kvoT)]}dD U

The Green’s generalized first and second identities may be
given in terms of three scalar functions u, v, and w as follows

S [qu-Vv+uV-(wVv)]dD=S wuv'dS (8)
D s

and

SD [uV-(wVv)-—vV-(qu)]dD=SS w(uv’ —vu’)dS 9

The last two integral terms in equation (7) may then be ex-
panded by using equations (8) and (9), respectively, as

S )\V-(akVT)dD=-—SDékV)\-VTdD+SSBk)\T'dS (10)
D
and

SD AV (kv 8T)dD = SD 0TV «(kvNdD

+SS KONT — N 6TdS (11)
Introducing equations (10) and (11) into (7) and rearranging

terms, 6J* may be written as the summation of the domain

integral part, 6J%, and the boundary integral part, /%, as

8J* =08Jp +6J% (12)
where
oJp = SD {[[V(kVD)+QION+ [V (kVN + T—~Ty}6T
+[Btk— ko) — VAV T|6k}dD 13)
and
oJ§ = Ss [NO(KT ") — kN 8T]dS (14

The first variational forms of the boundary conditions (2)
and (3) are simply given as

on S, : 86T=0 (15)

on S, : 8kT" )+ adT=0 (16)

It is now possible to introduce the above equations into 8J%,

where, for convenience, the boundary integral on S is first

decomposed into two boundary integrals defined on S, and

S,. Thus, it may easily be shown that 6J% takes the following
form:

8J¢ = SS N(KT)dS + Ss (kN + aN)éTdS an
1 2
Combining equations (6), (12), (13), and (17) finally gives
the unconstrained variational form of the performance index
as

oJ* = SD {([V(kVT)+ QSN+ [V o (kVN +T—Ty}6T
+[Btk—ko)— VANV TI6T}dD
+ Ssl N(KT")dS + SSZ (AN +aN6TdS =0 (18)

It may be noted that all the system state and boundary con-
straints have been incorporated into 8J*. The variations 6k,
6T, and 6\ are now independent of each other, thus their
coefficients may be set equal to zero separately in order to

Nomenclature
) v = gradient vector
[B] = gradient matrix Q = distributed heat source N = Lagrange multiplier
D = physical domain g = boundary heat flux function
J = performance index S = domain boundary {A] = nodal values of A
J* = modified performance S,,8, = partsofS
index T = temperature Subscripts
k = isotropic thermal con- T = prescribed temperature S = that of boundary S
ductivity T.,, = ambient temperature D = that of domain D
k,, k; = orthotropic thermal con- {T} = nodal temperature vector 0 = desired level
ductivities ' u, v, w = dummy scalar functions .
{N} = shape function vector x,y = Cartesian coordinates Superscripts
n = number of layers or finite o = heat transfer coefficient e = finite element e
elements ) B, 81, B, = weighting parameters T = transpose
n., n, = direction cosines « & = variational operator (¢)’ = normal gradient of (*)
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satisfy equation (6) [11]. This yields the stationary conditions
of J* (i.e., the Euler-Lagrange equations of calculus of
variations), which may be written along with the essential
boundary conditions (2-3) as follows

The T-problem:

in D Ve(kvD)+Q=0 (19)

onS, :T=T 20) -

on S,  kT' +q+a(T—Ty)=0 @21
The A-problem:

in D: Ve(kVN+T—-Ty,=0 22)

on S; : A=0 (23)

on S, : KN +ah=0 24
The gradient condition:

inD: Bk—ky)—VAVT=0 25)

It may be noted that equations (19-25) have artificially been
divided into groups headed by ‘‘the T-problem,” etc.
Although these equations are a complete set and form the
necessary conditions for optimum performance index J
subject to equations {1-3), their superficial grouping will help
in explaining an iterative method of solution which will be
adopted in the next section.

The necessary optimum conditions constitute a nonlinear
boundary value problem (BVP) in mathematical physics in
terms of the unknown functions &, 7, and A. Similar optimum
conditions are given for an orthotropic solid body in the
Appendix. Since the equations are nonlinear a solution
method will unavoidably be iterative.

4.0 Method of Solution

The present iterative solution procedure can be simply
explained as follows: By taking an initial guess for the control
function k, the T and A problems, each of which describes a
linear BVP in terms of the current k£, can be solved con-
secutively by an appropriate method (e.g., the finite element
method). Updating the control can then be achieved via
optimization techniques by minimizing the modified per-
formance index J* using the available information about its
gradient with respect to k. The iterative procedure continues
until a given tolerance is reached in the convergence of suc-
cessive solutions of .

In the next subsections, the space discretization and
minimization techniques used in the overall iterative
procedure are outlined.

4.1 Finite Element Method. Since the system state T, co-
state N\, and control k variables are space dependent, the 7-
and A-problems have to be discretized in space by using
discretization techniques, such as the finite element method
(FEM) for a numerical solution at each iteration step. The
FEM is a well-known method for solving elliptic problems
such as the steady-state heat conduction problem [12, 13]. In
this method, numerical solutions are found at discrete nodal
points in the domain and on the boundary by first assuming
interpolations of functions within each subdomain (or finite
element).

In the present material optimization problem the FEM is
chosen since the nonhomogeneous thermal conductivity is
most easily handled by this method, while another technique
such as the boundary element method (BEM) may prove itself
more efficient for load optimization problems [5-7].

The FEM solutions of the T and A\ problems require C°
continuous elements, i.e., element interpolation functions
must be such that 7 and A become continuous between the
elements [13]. On the other hand, the distribution of & may be
piecewise uniform over the elements, i.e., a different constant
in each element.

510/ Vol. 107, AUGUST 1985

If piecewise uniform conductivities are adopted over the
finite elements, incomplete element ‘‘conductivity matrices”
[13] may first be stored for the T and A problems. Complete
element conductivity matrices can then be obtained by simply

- multiplying each incomplete matrix with the current value of

the element conductivity, thus saving computer execution
times.

Through the space discretizations of the variables the
optimal control problem has been transformed into a so-
called ‘“‘reduced order optimization’ problem. Thus, the
problem can be treated as a mathematical programming (i.e.,
finite dimensional optimization) problem in which the func-
tion to be minimized is given by the discretized J*.

4.2 Conjugate Gradient Method. Starting with an initial
guess for the uniform conductivity over each finite element,
the corresponding nodal values of 7 and A are thus found by
using the FEM. In each iteration step, the improvement of
control values can then be achieved by the minimization of the
modified performance index J* using either the discretized J*
only (i.e., a zeroth-order method) or its gradient with respect
to the discrete controls (thermal conductivities) as well (i.e., a
first-order method). Since the gradient condition (25) already
provides us with the required information, a first-order
method, which is much more efficient in finding a local
minimum of a function of several variables, can be effectively
utilized.

It is noted that in an iteration step, the modified per-
formance index J* is simply given by equation (4) (compare
with equation (5)) since the heat conduction equation (19) has
already been satisfied by the FEM. Thus, for each finite
element with a uniform k, it may be shown that

% SDE (LUNYT(T) = To]? + Bk* — ko) }dD
where {N} is the usual ‘‘shape function vector’” of the FEM
[13]; the nodal temperature values are stored in the vector
{ T'}¢, and the superscripts e and T denote the element number
and transpose of a matrix, respectively.

In each element, the gradient of J*¢ with respect to k¢ (the
required information for a first-order = minimization
algorithm) is provided by the following expression using the
gradient condition (25) in integral form:

aJ*e e eT T e

e Sue {B(ke —ko)={T)¢ [BIIIBH{A}S}dD. (27)
where [B] is the ‘‘gradient matrix’’ of the FEM. In the above
equation the second term on:the RHS represents the scalar
product of the gradients of X'and Tin an element.

The function J* can now be minimized with respect to the
discrete element conductivities by using any first-order un-
constrained optimization technique. The conjugate gradient
method (CGM) of Fletcher-and Reeves [14] is adopted in the
present study since the computer storage requirement for the
method is relatively low [15]. A computer program in
FORTRAN is also available for the CGM in the literature
[16].

The CGM provides ‘‘better’’ element conductivities at cach
iteration level of the numerical method. It is noted that
conductivities are updated automatically through the
algorithm [15, 16].

The outlined general iterative procedure, which at cach
iteration step involves the solution of two potential problems
by the FEM and updating element conductivities by the CGM,
is continued: until a spccified tolerance is reached in the
convergence of conductivities.

Jre= (26)

5.0 Numerical Results and Discussion

Numeérical results have been obtained for an isotropic
infinite plate and infinite cylinder, which are composed of
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uniform material layers. Although these simple geometries
are essentially one-dimensional, two-dimensional isotropic
quadratic quadrilateral elements with eight nodes have been
utilized for the FEM solution of both the 7- and A-problems
(see Fig. 1). :

Some of the parameters of the optimization problem were
fixed as follows: T = Ty, = ky, = 1,0 =0.landg =T, =
0. The number of finite elements n, hence the number of
uniform thermal conductivity layers, was varied, as well as
the heat transfer coefficient o and the weighting parameter (.
The temperature boundary conditions are indicated in Fig. 1.

During the iterative solution procedure several initial
guesses were tried to make sure of a global minimum.
Computations were performed on a VAX-11/780 computer
system. The numerical procedure has typically taken ten
iterations for convergence.

It was possible to obtain an exact solution for the infinite
plate with a single material layer. In Table 1, numerical results
are shown to be in excellent agreement with the exact results
when « = 0.5. The weighting parameter 3 plays an important
role in the problem. It can be said that taking a smaller value
for 8 would result in the temperature T getting closer to the
desired level 7, (albeit with high-conductivity values).
Nevertheless, if high-conductivity materials are not available
one might not choose a very small value for 8. On the other
extreme, by taking a very large value for 8 we would indicate
our desire of using k close to ky, sacrificing in 7—T,,. Thus,
the value of 8 is chosen by us according to the relative im-
portance we give to the attainment of T— T} versus k— k.

The weighting parameter 8 is set as 1076 for all the
remaining numerical results. In Table 2, the average optimal

—

T'=0
-1 k! k2 k3 k¢ K5 1 kTeaT=0
T'= 0
x=0 l x=1
KTt +aT=0

Fig. 1 Problem geometry, finite elements, and temperature boundary
conditions for (a) infinite plate and (b) infinite cylinder

thermal conductivity, averaged over the finite elements, is
given when the infinite plate was composed of different
number of layers, i.e., for various #n. Increasing n, one would
have more degrees of freedom (and ability) to achieve desired
distributions of temperature throughout the solid body.

For the remaining two figures n was set as 10. In Fig. 2,
optimal thermal conductivity k& which is piecewise constant in
each finite element (or layer) is shown as a function of x with
solid constant line segments when «, the heat transfer
coefficient, takes on various numerical values for the infinite
plate. Smoothed-out thermal conductivities are also depicted
by the dashed lines in the figure. As the type of boundary
condition (21) changes its character (with ¢ = 0) as o becomes
zero or infinitely large, the value of this parameter greatly
affects the optimum thermal conductivity values. It may be
seen from the figure that (with T and T, each set equal to 1)
larger values of o necessitate higher optimal conductivities to
be able to conduct heat from the prescribed temperature
boundary at x = 0 to the convective boundary at x = 1 with
T, =0.

The last figure, Fig. 3, shows the optimal thermal con-

30.

i T T
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Fig.2 Optimal thermal conductivities for infinite plate

Table 1 Exact and numerical optimal & for the infinite plate
withn = land « = 0.5 .

B Exact Numerical
106 15.773037 15.773382
1073 2.7800291 2.7800304
10 © 1.0174046 1.0174046
10 3 1.0000180 1,0000180

Table2 Optimal thermal conductivities for the infinite plate
Number of
layers Heat transfer coefficient
no [ =0 «=0.5 a=1.0
1 6.3099 15.7733 22.7719
2 5.8207 15.5362 22.3549
5 5.5889 15.3077 21.9912
10 - 5.5246 15.2260 21.8462
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Fig.3 Optimal thermal conductivities for infinite cylinder

ductivity k as a function of the radial distance r for the infinite
cylinder. Similar trends, but with larger magnitudes for &,
have been observed for the cylinder as in the case of the plate.

6.0 Conclusions

In the present analysis, optimization of thermal con-
ductivities of solids has been investigated as a material op-
timization problem. The necessary optimum conditions,
which are described by nonlinear PDE’s, are derived for both
isotropic and orthotropic solids, although numerical results
are provided only for the isotropic case.

The proposed iterative numerical method of solution,
which utilizes the FEM in solving the state and co-state
equations and the CGM in minimizing the performance index,
is general for all types of material properties. On the other
hand, larger computer execution times would be needed for
orthotropic materials, as the ‘‘conductivity matrix’’ in the
FEM will have to be reevaluated fully at cach iteration level.

The state PDE, i.e., the heat conduction equation, is
formally bilincar in terms of the state (temperature) and
control (thermal conductivity) functions. Thus, for guess
values of discrete thermal conductivities the equation is cf-
fectively linearized when solved for the state variable by the
FEM, requiring no inner iterations. The co-statc cquation
enjoys similar characteristics.

It may be noted that if therc are any constraints on the
thermal conductivity, such as upper and/or lower bounds,
different minimization techniques must be used, as the CGM
is an unconstrained method. Quasi- or modified-Newton
routines for the minimization of a function with constraints
on the variables arc, however, availablc in the NAG Library
[15].

References

1 Razani, A., and Ahmadi, G., *“On Optimization of Circular Fins With
Heat Generation,” J. The Franklin Institute, Vol. 303, 1977, pp. 211-218.

2 Meric, R. A., “Finite Element Metbods for an Optimal Steady-State Con-
trol Problem,’ Int. J. Numer. Meths. Engn., Vol. 12, 1978, pp. 1375-1382.

3 Meric, R. A., “Finite Element and Conjugate Gradient Methods for a
Nonlinear Optimal Heat Transfer Control Problem,” [nt. J. Numer. Meths.
Engn., Vol. 14, 1979, pp. 1851-1863.

4 Meric, R. A., “Finite Element Analysis of Optimal Heating of a Slab
With Temperature Dependent Thermal Conductivity,” Int. J. Fleat Mass
Transfer, Vol. 22, 1979, pp. 1347-1353.

5 Meric, R. A., “Boundary Integral Equation and Conjugate Gradient
Methods for Optimal Boundary Heating of Solids,” Int. J. Heat Transfer, Vol.
26, 1983, pp. 261-267.

6 Meric, R. A., “Boundary Element Methods for Optimization of
Distributed  Systems,’”” Inr. J. Numer. Meths. Engn., Vol. 20, 1984, pp.
1291-1306.

512/ Vol. 107, AUGUST 1985

. . «Boundary Elements for Static Optimal Heating of Solids,”’
ST e L or HimaT TaAusreR, Vol. 106, No. 4, Nov. 1984, pp. 876-880.

8 Meric, R. A., “Optimal Boundary Tractions for Solids With Initial Ther-
wmal Strains,”” ASME Journal of Applied Mechanics, Vol. 52, 1985.

9 Luric, K. A., ““The Mayer-Bolza Problem for Multiple Integrals: Some
Optimum Problems for Elliptic Differential Equations Arising in
Magnetohydrodynamics,”” Topics in Optimization, cdited by G. Leitmann,
Academic Press, New York, 1967.

10 Lions, J. L., “Optimal Control of Systems Governed by Partial Differen-
tial Equations,”’ Springer-Verlag, Berlin, 1971.

11 Gelfand, 1. M., and Fomin, 8. V., Calculus of Variations, Prentice-Hall,
Englewood Cliffs, NJ, 1963.

12 Wilson, E. L., and Nickell, R. E., “*Application of the Finite Element
Method to Heat Conduction Analysis,”” Nucl. Eng. Design, Vol. 4, 1966, pp.
276-286.

13 Hinton, E., and Owen, D. R. J., Finite Element Programming, Academic
Press, New York, 1977,

14 Fletcher, R., and Reeves, C. M., “Function Minimization by Conjugatc
Gradients,”” Computer J., Vol. 7, 1964, pp. 149-154.

15 NAG Library, Numerical Algorithms Group, Oxford, England.

16 Kuester, J. L., and Mize, J. H., Optimization Techniques with FOR-
TRAN, McGraw-Hill, New York, 1973.

APPENDIX
Optimization of Orthotropic Thermal Conductivities

Problem Formulation. For convenience, only a two-
dimensional formulation is given. The optimization problem
may be stated as finding the orthotropic thermal con-
ductivities k, and k, in the x and y directions, respectively,
such that the following equations are satisfied.

The T-problem:
ad oT ad oT

i D:———(k—>+—(k———)+ =0 Al

" ax K1 ) Yoy ke € (A1)
onS§, : T=T (A2)

oT aT

on S, : k,Wn,‘.+kza—yny+q+oz(T—Tw)=0 (A3)

and the following performance index J is minimized

1
J= | - Tor 481k — ko) + Balhs ~ k1D (A4)
where 8, and 8, are weighting parameters; kg, and kg, arc the
desired levels of &, and k,, respectively, and n, and n, are the
direction cosinces.

Necessary Conditions of Optimality. By using calculus of
variations the neccessary optimum conditions 